

STUDI MODEL FISIK STABILITAS SAND BOILING PADA KONSTRUKSI BENDUNG (KASUS TANAH BERPASIR DENGAN LAPISAN HOMOGEN)

Yassir Arafat*

Abstract

Observation of sand boiling processes on wear construction by using a model test that is designed for simulated soil stability disturbance (sand boiling) caused by ground water flow below the construction side. Test and observation are done to the parameters such as upstream water level (hw), down stream water level when sand boiling occurred (hc), effect of sheet pile length and position of sheet pile on wear construction, and the medium (sand type) of flow and thick of the medium layer, to get critical water level (hc) when first sand boiling occurred. The variable was made in a comparison value of the relation of dimensionless parameters that is analyzed by a graph. The test model show that the length and position of pile sheet, the tick of sand layer, and type of sand medium; give the best resistance where the sand boiling occurred. **Keywords:** Sand boiling, Weir construction, Sheet pile

Abstrak

Pengamatan proses sand boiling pada konstruksi bendung dengan menggunakan suatu model uji yang dirancang dapat mensimulasikan adanya gangguan stabilitas tanah (sand boiling) akibat timbulnya pengaliran pada medium di bawah konstruksi. Pengujian dan pengamatan dilakukan terhadap parameter berupa tinggi air (hw) dihulu bendung, tinggi air dihilir bendung saat peristiwa sand boiling terjadi (hc), pengaruh panjang sheet pile dan posisi penepatan sheet pile pada konstruksi bendung, dan juga jenis medium pengaliran (pasir) dan tebal lapisan medium (T), untuk mendapatkan besarnya tinggi muka air kritis (hc) dimana pertama kali terlihat kejadian sand boiling. Variabel ini dibuat dalam suatu nilai perbandingan hubungan parameter tanpa dimensi yang dianalisis dalam suatu grafik. Model uji memperlihatkan panjang dan posisi sheet pile, tebal lapisan pasir, dan jenis medium pasir yang memberikan hambatan terbaik dimana perisitiwa sand boiling terjadi.

Kata kunci: sand boiling, konstruksi bendung, sheet pile.

1. Pendahuluan

Aliran air didalam medium massa tanah teriadi ketika ada perbedaan tinggi energi muka air pada satu sisi dengan sisi yang lain. Misalnya konstruksi bendung, pada satu sisi dilakukan usaha peninggian muka air sementara pada sisi hilir elevasi muka air lebih rendah. Akibat peninggian tersebut terjadi perbedaan tinggi energi air didepan dengan dibelakang bendung. Konsekuensi dari perbedaan tinggi energi ini akan mengakibatkan teriadinya aliran didalam medium tanah dibawah dasar bendung karena adanya perbedaan tekanan

Aliran air didalam massa tanah mengakibatkan timbulnya gaya seepage. Gaya seepage ini merupakan fungsi dari gradient hidrolik, berat jenis air(cairan) dan gravitasi. Gaya seepage menimbulkan suatu gaya anakat. Dalam medium tanah yang porous tanah berpasir seperti dapat mengakibatkan terangkatnya butiran pasir jika gaya seepage ini lebih besar dari gaya berat material pasir yang dilalui aliran tersebut.

Peristiwa terangkatnya butiran ini dikenal sebagai sand boling dan piping, merupakan suatu gangguan stabilitas dari medium dan jika hal ini terus berlanjut akan mempengaruhi stabilitas konstruksi secara keseluruhan. Gejala terjadinya peristiwa sand boiling ini dapat dimodelkan secara fisik dalam suatu penelitian laboratorium dengan

^{*} Staf Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Tadulako, Palu

melakukan percobaan uji model fisik menggunakan model konstruksi bendung dengan medium aliran adalah tanah berpasir serta berpedoman pada prinsip-prinsip aliran air didalam tanah.

Masalah yang diteliti adalah mempelajari mekanisme stabilitas piping dan sand boiling pada konstruksi bendung dengan menggunakan *medium* tanah berpasir dengan satu lapisan yang homogen. Rumusan dasar dan anggapan yang digunakan pada percobaan ini adalah:

- Material yang digunakan adalah tanah berpasir yang homogen dan isotropik dengan contoh pasir yang digunakan didapatkan dari sungai palu.
- 2. Kedalaman dan tebal lapisan berhingga sehingga diketahui batas-batasnya
- 3. Pengaliran yang terjadi merupakan pengaliran dua dimensi dimana hukum darcy dan bernoulli berlaku dengan sifat aliran laminer.
- 4. Uji model tidak diskalakan dengan besarnya gravitasi.

Penelitian ini dilakukan untuk mendapatkan parameter disain dari model yang dibuat untuk mengamati perilaku sand boiling. Adapun paramater didesain yang akan diamati dan diukur meliputi; tinggi muka air di depan bendung, lebar bendung, tebal lapisan pasir di bawah bendung, panjang sheet pile dibawah bendung, jarak penempatan sheet pile dari muka bendung, tinggi muka air kritis dimana sand boiling mulai terjadi (hc).

2. Tinjauan Pustaka

2.1 Pengaliran dalam medium porous

Aliran air dalam suatu massa tanah dapat dianalisa menggunakan azas-azas mekanika fluida yaitu : Hukum kekekalan massa, hukum kekekalan energi dan hukum kekekalan momentum (hukum kedua Newton). Pada hukum kekekalan massa, berlaku ketentuan bahwa banyak aliran fluida (dalam hal ini air) yang masuk ataupun keluar harus sama dengan besarnya perubahan volume fluida yang tejadi. Jika dirumuskan dalam suatu elemen massa tanah dapat dituliskan sebagai berikut :

dimana dqx, dqy, dqz, berturut-turut merupakan tingkat pengaliran dalam arah x,y, dan z, sementara $\frac{\partial V}{\partial t}$ adalah perubahan volume yang terjadi dalam suatu interval waktu tertentu.

suatu interval waktu tertentu. Persamaan ini dapat pula dituliskan mengunakan nilai *discharge velocity* dalam bentuk persamaan kontinuitas sebagai berikut :

Aliran fluida hanya akan terjadi jika terdapat perbedaan energi antara satu titik lainya. Untuk kondisi aliran steady state flow berlaku hukum kekekalan energi yang dipenuhi oleh persamaan Bernoulli : (Sumber: Das, Braja, M, (1998), Principles of Geotechnical Engineering. Hal. 159)

$$h_t - h_p - h_e = \frac{v^2}{2g} = konstan$$
(3)

dimana: ht= total head, hp= pressure head, he= elevation head, $\frac{v^2}{2g}$ = energi

kinetik yang melalui massa tanah. Nilai konstan merupakan suatu referensi yang dapat diambil sama dengan 0, sementara pada porous media seperti tanah pengaruh kecepatan aliran sangat kecil akibatnya pengaruh energi kinetik dapat diabaikan sehingga persamaan (4) dapat disederhanakan dan dituliskan ulang sebagai berikut : (Sumber: Das, Braja, M, (1998), Principles of Geotechnical Engineering, Hal. 160).

$$h_t - h_p - h_e = 0$$
(4)

Besarnya tingkat pengaliran dari satu titik ke titik yang lebih rendah disebut *Gradient Hidrolik* yang dirumuskan sebagai berikut ;

$$i = -\lim_{\Delta x \to 0} \frac{\Delta h}{\Delta s} \Big|_{t=cons} = -\frac{\partial h}{\partial s} \dots \dots \dots (5)$$

dari sini terlihat bahwa Gradient hidrolik merupakan suatu besaran vektor yang arahnya sesuai dengan arah pengaliran yang terjadi menurut sistem koordinat yang digunakan.

Penyelidikan Darcy menggunakan hukum kekekalan momentum menyimpulkan bahwa besarnya pengaliran itu berbanding langsung dengan luas penampang medium dan perubahan tinggi energi antara titik pengaliran dan berbanding terbalik medium dengan panjang yang dilaluinya, ini yang dikenal sebagai Hukum Darcy yang ditulis sebagai berikut:

 $q \propto -k \frac{A.\Delta h}{L}$ (6)

Dimana; k adalah koefisien permeabilitas medium. Persamaan tersebut sering pula dituliskan dalam persamaan gradien hidrolik sebagai :

q = - k . i . A(7)

Meskipun persamaan hukum Darcy tersebut telah diterapkan secara luas dalam analisa aliran melalui suatu porous medium, persamaan tersebut tetap memiliki keterbatasan bahwa hanya berlaku untuk aliran laminer, dan tidak memberikan hasil yang akurat untuk aliran non laminer atau turbulen. Untuk mengetahui apakah aliran yang terjadi merupakan aliran laminier atau turbulen ini dapat dikontrol dengan menggunakan bilangan Reynolds berdasarkan persamaan berikut : (Sumber: Edil,B Tuncer, (1982), Seepage, Slope and embankments. Hal. 6)

 $R_{h} = \frac{v.Do}{\mu} \qquad (8)$

dimana: R_h = Bilangan Reynold , v = kecepatan aliran (v = k.i) , μ = koefisien kekentalan air pada suhu 20 °C.

Aliran dikatagorikan laminer jika memiliki bilangan Reynold < 1.0, dalam geoteknik umumnya aliran turbulen mulai terjadi jika gradasi materi yang ditinjau masuk katagori kerikil, sebagai contoh untuk pasir kasar memiliki bilangan Reynold sekitar 0.98 yang berarti masih tergolong aliran laminier.

2.2 Gaya Seepage

Gaya seepage dapat dihitung dengan persamaan: (Sumber: Edil,B Tuncer, (1982), Seepage, Slope and embankments. Hal. 25)

 $Fs = i \cdot \gamma w \cdot V$ (9)

dimana : Fs = Gaya Seepage (kN) , i = Gradien hidraulik , V = volume air yang dipindahkan (m³) , γ_w = berat jenis air (kN/m³).

Kondisi dimana akan terjadi tekanan efektif sama dengan gaya seepage dikenal sebagai gradient hidraulik kritis. Gradient hidraulik maksimum yang ada pada lapisan permukaan aliran disebut exit gradient i_e . (Sumber: Edil,B Tuncer, (1982), Seepage, Slope and embankments. Hal. 25)

$$i_{crit} = \frac{\gamma'}{w}$$
(10)

dimana :

 γ' = berat volume efektif tanah terendam air ($\gamma' = \gamma_{sat} - \gamma_w$)

yw= berat volume air. Implikasi dari persaman ini adalah ;

- Jika i_{crit} = i_e pada saat suatu titik maka tegangan efektif dari massa tanah sama dengan nol sehingga tanah tidak mampu memikul beban yang ada diatasnya kondisi ini biasa disebut quick condition.
- 2. Jika i_{crit} < i_e maka akan terjadi pengangkatan butiran tanah oleh air yang mana jika terjadi dipermukaan disebut boiling dan jika didalam lapisan tanah disebut piping.

Perbandindingan antara i_{crit}. dan i_e akan memberikan suatu faktor keamanan stabilitas terhadap kondisi boiling dan piping tersebut yang ditentukan dengan persamaan ;

3. Metode Penelitian

Model stabilitas sand boiling pada konstruksi bendung dengan medium berupa tanah berpasir yang terdiri atas Studi Model Fisik Stabilitas Sand Boiling Pada Konstruksi Bendung (Kasus Tanah Berpasir Dengan Lapisan Homogen) (Yassir Arafat)

dua lapisan homogen yang berbeda. Penelitian dilakukan di laboratorium Mekanika Tanah Jurusan Sipil Fakultas Teknik Universitas Tadulako dengan menggunakan suatu model uji yang mensimulasikan adanya gangguan stabilitas sand boiling akibat timbulnya pengaliran pada medium dibawah konstruksi bendung tersebut.

Model kolam percabaan dilaboratorium (panjang x lebar x tinggi = 150 cm x 100 cm x 100 cm) yang didesain sedemikian hingga dapat mensimulasikan adanya *piping* dan sand boiling pada model. Bahan kolam didesain sedemikian rupa pada satu sisi merupakan dinding transparan yang dilengkapi pita ukur untuk mengetahui tebal lapisan pasir (T), tinggi air didepan bendung (hw), tinggi muka air kritis di belakang bendung (hc), kedalaman/panjang sheet pile dibawah dasar bendung (S), jarak penempatan sheet pile dibawah bendung diukur dari muka bendung (x), lebar bendung (B).

Pasir yang digunakan lolos saringan No. 4 dan tertahan saringan No. 40 dan pasir halus lolos saringan No. 40 dan tertahan saringan No. 200. Sebelum ditempatkan dalam kolam percobaan pasir terlebih dahulu dijenuhkan. Kolam percobaan selanjutnya diisi dengan air kurang lebih 1/2 dari total timggi lapisan pasir dan suhu air di dalam kolam percobaan diukur, dan sebelum percobaan dilakukan maka terlabih dahulu dipastikan tidak ada gelembung udara yang terperangkap didalam susunan lapisan pasir.

Keterangan:

hw = tinggi muka air di depan bendung (cm).

- T = tebal lapisan tanah pasir di bawah bendung (cm).
- B = lebar bendung (cm).
- X = jarak penempatan sheet pile di bawah bendung diukur dari muka bendung (cm).
- S = kedalaman/panjang sheet pile di bawah dasar bendung (cm).
- hc = tinggi muka air kritis (cm)

Setelah susunan lapisan pasir dibentuk, sheet pile dipasang di bawah bendung dengan jarak dari depan benduna dan tinggi sheet pile disesuaikan dengan variasi yang telah ditetapkan. Kemudian benduna dimasukkan ke dalam kolam percobaan pada tempat yang telah ditetapkan. Digunakan plasticin untuk memastikan tidak ada kebocoran antar bendung dengan kaca, dan bendung dengan sheet pile.

Pada saat posisi bendung sudah terpasang pada tempatnya dengan maka keran dibuka haik untuk air memasukkan dari depan dan belakang bendung secara bersamaan. Pada saat tinggi muka air sudah mencapai hw yang ditetapkan maka keran ditutup dan dibiarkan selama 5 menit. Pada saat pengamatan kita mulai, maka posisi muka air dipertahankan dan posisi muka air di belakang bendung diturunkan perlahan-lahan dengan mengeluarkan air melalui keran pembuangan. Selama terjadi penurunan muka air di belakna bendung maka posisi muka air di depan benduna dipertahankan, dan perubahan stabilitas permukaan tanah di belakang bendung diamati sampai terjadi sand boiling. Ketinggian muka air di belakang bendung pada saat terjadi sand boiling diukur dan dicatat, yaitu nilai hc. Setelah nilai hc dicatat pada tabel yang telah dibuat, maka kolam dikuras airnya dengan jalan membuka kedua keran pembuangan yang di belakana kolam, dan selanjtnya benduna dikeluarkan dari kolam percobaan.

Prosedur percobaan ini diulangi dengan melalui tahapan yang sama untuk tiaptiap model percobaan dengan memvariasikan variabel yang akan diteliti yaitu susunan pasir kasar dan pasir halus , jarak sheet pile dari muka bendung (X) dan tinggi sheet pile di bawah bendung (S) yang telah ditetapkan.

4. Hasil dan Pembahasan

Medium pasir yang digunakan dua jenis yaitu pasir kasar dengan karakteristik berat jenis (Gs)= 2.61; berat volume jenuh ($\gamma_{sat.}$)=1.905 gr/cc; permeabilitas (K₂₀)=0.05321813 cm/det. Lapisan pasir halus mempunyai berat jenis (Gs)= 2.66; berat volume jenuh ($\gamma_{sat.}$)=1.917 gr/cc; permeabilitas (K₂₀)= 0.01001160

4.1 Panjang sheet pile

Panjang sheet pile (s) divariasikan mulai dari yang terpendek = 2 cm, 4 cm, 6 cm sampai yang terpanjang 8 cm. menunjukkan bahwa semakin Grafik besar rasio S/T semakin sulit terjadinya sand boiling, sehingga semakin besar kedalaman dari sheet pile ditanam mempersulit terjadinya akan sand boiling. Didapatkan bahwa sand boiling lebih sulit terjadi pada sheet pile yang terpaniana, hal ini disebabkan oleh pengurangan energi dan kecepatan air yang sampai di permukaan pasir pada hilir bendung.

Gejala ini dapat dilihat pada grafik hw/hc vs S/T dengan variasi panjang penempatan sheet pile (X/B) Tinggi muka air kritis (hc) merupakan tinggi muka air ketika mulai terjadi gejala sand boiling di hilir bendung.

4.2 Jenis pasir

Kecenderungan ini berlaku baik pada lapisan pasir kasar homogen maupun pada lapisan pasir halus homogen. Hasil pengamatan memperlihatkan bahwa pada material pasir kasar, sand boiling terjadi pada (hc) yang lebih rendah dibandingkan dengan pasir halus. Dari jenis susunan lapisan pasir didapatkan bahwa kejadian sand boiling akan lebih cepat teriadi pada lapisan pasir halus dibandingkan dengan lapisan pasir kasar homogen.

Gambar 2. Grafik hubungan hw/hc vs S/T susunan lapisan pasir halus

4.3 Jarak Sheet pile dari muka bendung

Penempatan sheet pile dibawah bendung (X) juga divariasikan mulai dari muka bendung =1cm, 5,3cm, 9,3cm 14.5cm hasil dan pengamatan menunjukkan bahwa sand boiling lebih sulit terjadi pada saat penempatan sheet pile berjarak 14,5 cm dari muka bendung. Panjang bendung (B) mempengaruhi panjang pengaliran dan meredam energi air sehingga sand boiling sulit terjadi. Tebal material (T) pada saat dilakukan pengamatan sand boiling terdapat dua variasi yaitu 10cm, dan 12,5cm, hasil pengamatan menunjukkan bahwa sand boiling lebih sulit terjadi pada saat ketebalan 10cm.

Gambar 4. Grafik hubungan hw/hc vs S/T dengan beberapa nilai perbandingan X/B pada B/T untuk susunan lapisan pasir halus.

5. Kesimpulan dan Saran

5.1 Kesimpulan

Hasil percobaan studi model stabilitas sand boiling pada konstruksi bendung, Untuk mengamati terjadinya sand boiling pada (kasus tanah berpasir dengan lapisan homogen) dapat ditarik kesimpulan :

- Sand boiling terjadi apabila tinggi muka air didepan dan belakang bendung terdapat beda tinggi. Sand boiling akan lebih mudah terjadi bila sheet pile ditempatkan dekat muka bendung.
- 2. Sand boiling sulit terjadi bila sheet pile ditempatkan lebih dalam
- 3. Dibutukan energi (hw/hc) yang lebih besar pada pasir kasar dibandingkan dengan pasir halus.

5.2 Saran

Guna pengembangan penelitian studi model stabilitas sand boiling pada konstruksi bendung perlu melakukan penelitian untuk mengamati perilaku. Stabilitas piping pada konstruksi bendung karena penulis tidak dapat melakukan akibat keterbatasan alat uji model dan waktu.

6. Daftar Pustaka

- A.C. Palmer, (1991), Speed effect in cutting ang ploughing, Journal Geotechnique, Vol.49.No.03,pp.285-294.
- Bowles, Joseph E, (1979), Physical and Geotechnical properties of soils, McGraw-Hill Inc Kogakusha.
- Cedergreen, Harry R, (1989), Seepage, Drainage and Flow Nets, third edition, John Wiley and Sons, United States of America.
- Das, Braja, M, (1998), Principles of Geotechnical Engineering, Fourth edition, PWS Publishing, United State of America.

- Edil,B Tuncer, (1982), Seepage, Slope and embankments, Class Note CEE30, Departemen of Civil and Environmental Engineering University of Winsconsin-Madison
- Griffith, D.V, (1994), Seepage beneath unsymtri cofferdam, Journal Geotechnique, Vol.44, No.02, pp.297-305.
- Holtz, Robert D, (1981) An introduction to geotechnical engineering, Prentice-Hall Inc, Englewood Cliffs.
- R.De Boer, (1997), The effect of uplift in liquid-saturated porous olids, Journal Geotechnique, Vol. 47, No.02, pp.289-298.