Pengaruh Kaolin Terhadap Membran Blend Kitosan Poli Vinil Alkohol-Litium Sebagai Membran Elektrolit Untuk Aplikasi Baterai Ion Litium

Siang Tandi Gonggo, Anang Wahid M. Diah, Reki Lanteene


Today, the battery is the most practical and in expensive energy storage device in a modern community. A variety of new materials technologies has been developed in the manufacture of the battery, especially the development of the solid electrolyte (solid). Polymer Electrolytes can be found in the polymer batteries form such as lithium ion polymer battery. A natural polymer such as chitosan is potential as polymer electrolyte membrane for battery applications. The chitosan has amino and hydroxyl groups that allow for modification. The modification of chitosan membrane is expected to produce the better membranes characters. The aim of this research is to study the effect of the addition of inorganic filler kaolin on the conductivity of the polymer electrolyte that made of chitosan-polyvinyl alcohol than was added to the lithium salt. The ionic conductivity of the polymer electrolyte chitosan-polyvinyl alcohol-lithium-kaolin was measured by using an impedance spectroscopy. The measurement results showed that the polymer electrolyte chitosan-polyvinyl alcohol-lithium with the addition of 4% kaolin provide the highest ionic conductivity is large 6.551x10-5 S/cm. In comparison, characteristics of batteries that made from polymer electrolyte chitosan-polyvinyl alcohol-lithium with the addition of kaolin have a voltage of 2.4 volts which have similarities to the commercial batteries. This result indicates that the kaolin can be used as a filler to increase the ionic conductivity of the polymer electrolyte chitosan-polyvinyl alcohol-lithium, and then it can be developed as a battery.


Battery, chitosan, polyvinyl, alcohol, kaolin, lithium, electrolyte membrane


Ahmad, A., Rahman, M. Y. A., Noor, S. A. M., & Bakar, M. R. A. (2009). Preparation and characterization of PVC-Al2O3- LiClO4 composite polymer electrolyte. Journal of Sains Malaysia, 38, 483-487. [Link]

Ghufira, Yudha, S. P., Angga, E., & Ariesta, J. (2012). Electrochemistry study on PVC-LiClO4 polymer electrolyte supported by bengkulu natural bentonite for lithium baterry. International Journal of Science and Tecnology, 1, 26-29. [Link]

Gray, F., & Armand, M. (1999). Polymer electrolytes. In J. O & Besenhard (Eds.), Handbook of Battery Materials: New York: Wiley-VCH.

Hasan, C. M., & Peppas, N. A. (2000). Structure and aplication of poli(vinyl alcohol) hidrogel produced by conventional crosslinking or by freezing/thawing methodes. Advance in Polymer Science, 153, 37-38. [Link]

Hu, L., Wu, H., Mantia, F. L., Yang, Y., & Cui, Y. (2010). Thin, flexible secondary Li-ion paper batteries. American Society . 4(10), 5843-5848. [Link]

Jin, J., Song, M., & Hourtston, D. J. (2004). Novel chitosan-based films cross-linking by genipin with improved physical properties. Biomacromolecule, 5 (1), 162-168. [Link]

Jingyu, X., Xiaobin, H., & Xiaozhen, T. (2004). Effect of organic-inorganic hybrid P123- em-SBA15 on lithium transport properties of composite polymer electrolyte. Chines Science Bulletin., 49(20), 2129-2133. [Link]

Linden, D. (2002). Primary batteries-introduction handbook of baterries 3Ed (pp. 164-200): USA: The McGraw-Hill Companies.’

Majid, S. R., & Arof, A. K. (2005). Proton-conducting polymer electrolyte film based on chitosan acetat complexed with NH4NO3. Physica B, 355(1-4), 78-82. [Link]

Majid, S. R., & Arof, A. K. (2007). Electrical behaviour of proton conducting chitosan-phosphoric acid-based electrolytes. Physica B, 390(1-2), 209-215. [Link]

Mohamed, N. S., Subban, R. H. Y., & Arof, A. K. (1995). Polymer batries fabricated from lhitium complexed acetilated chitosan. Journal of Power Sources., 56(2), 153-156. [Link]

Osman, Z., Ibrahim, Z. A., & Arof, A. K. (2001). Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Journal devoted to scientific and technological aspects of industrially relevant polysaccharides., 44, 167-173. [Link]

Paradossi, G., Lisi, R., Paci, M. n., & Crescenzi, V. (1996). New hydrogels based on poly(vinyl alcohol)., polymer. Chemistry. Journal of polymer Science : Part A, 34(16), 3417-3495. [Link]

Rahmi, & Julinawati. (2009). Aplication of modified khitosan for adsorben ionic Cu2+ metal in diesel oil. Jurnal Natural, 9(2). [Link]

Razak, T., Winie, F. S. A., Ghani, & Ahmad. (2008). Conductivity and FTIR studies on PVA/Chitosan-LiCF3SO3. State Science and Technology., 16(1), 1-7. [Link]

Smitha, B., Sridhar, S., & Khan, A. A. (2003). Synthesis and characterization of proton conducting polymer membranes for fuel cells. Journal of Membran Science, 225(1-2), 63- 76. [Link]

Subban, R. H. Y., & Arof, A. K. (1996). Sodium iodide added chitosan electrolyte film for polymer batteries. Physica Scripta, 53, 382-384. [Link]

Wang, H., Fang, Y., & Yan, Y. (2001). Surface modification of chitosan membranes by alkane vapor plasma. Mater Chem, 11, 911- 918. [Link]

Yahya, M. Z. A., & Arof, A. K. (2003). Effect of oleic acid plasticizer on chitosan-lithium acetat solid polymer electrolytes. European Polymer Journal, 39(5), 897-902. [Link]

Zang, Y., Huang, X., Duan, B., Wu, L., Li, S., & Yuan, W. (2007). Preparation of electronspun chitosan/poli(vinil alchol) membranes. Colloid polymer. Colloid Polymer Science. Colloid Polymer Science, 285(8), 855-863.[Link]

Full Text: PDF


  • There are currently no refbacks.

p-ISSN: 2302-6030; e-ISSN: 2477-5185


Creative Commons License

Jurnal Akademika Kimia
by Universitas Tadulako is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at

Indexed By

Crossref WorldCat PKP Index OneSearch BASE Scholar GARUDA Sinta Neliti Mendeley