USING TONGUE TWISTER
TO IMPROVE THE PRONUNCIATION
OF GRADE VIII STUDENTS

Yollanda L. Turumi¹, Jamiluddin², Salehuddin³

Abstract

This research was to prove that using Tongue Twister can improve students’ pronunciation of sound /θ/ and sound /ð/ of Grade VIII Students of SMP Negeri 4 Palu. This research applied quasi-experimental research design. The population was 263 students of SMP Negeri 4 Palu enrolled in academic year 2014/2015. The sample was selected by using a purposive sampling technique. The researcher used test in collecting the data. Having analyzed the data, the researcher found that the t-counted was 3.85. Consulting to the t-table by applying degree of freedom (df) (26 – 1 = 25) and the level of significance 0.05, the researcher found that the value of df in the t-table is 2.06. It shows that the research hypothesis was accepted. It means that using tongue twister can improve the pronunciation of grade VIII students of SMP Negeri 4 Palu.

Keywords: Pronunciation; Tongue Twister; sound /θ/ and sound /ð/

INTRODUCTION

Nowadays, English as foreign language is formally taught from elementary school to university in order to prepare students to face globalization era. In the school, students study English but most of them still cannot use the language maximally. It is difficult for them to say some words in English because of their mother tongue. Pronouncing Bahasa Indonesia is different from pronouncing English words. In fact, during the teaching learning process in the class, pronunciation is less emphasized.

Pronunciation is how we produce sound of words. Pronunciation is an important aspect of language especially in speaking fluently. Burns and Claire (2003:5) state “Pronunciation refers to the phonology of language or meaningful perception or production of the sound of the language and how they impact on the listener”. Good pronunciation is essential to communicate because by that native speaker or non-native

¹ Email: olla.laurent@gmail.com
speaker can effectively get the meaning. Good pronunciation gives good quality of conversation. In Bahasa Indonesia there is no difference between its writing and its sound of words but it is different from English. For example, “thank” students pronounce /tang/ or /sang/ while the correct pronunciation is /θæŋk/, “mother” is pronounced /mʌðər/ while the correct pronunciation is /mʌðər/, “the” they pronounce /de/ while the correct pronunciation is /ðə/. Interdental sounds do not occur in Bahasa Indonesia. It is difficult for the students to imitate the sounds.

This research was conducted to improve the students’ pronunciation by using Tongue Twister. Tongue twister is difficult to do but if the students practice it, they can speak almost like native speaker of English. Tongue twister is also fun to do for them because it is unique to be spoken. It can improve the students’ motivation in learning pronunciation. Tongue twister allows them to strengthen their speech. Carmen (2010:8) states that “a tongue-twister is a sequence of words that is difficult to pronounce quickly and correctly”. It is hard to pronounce tongue twister sentences because of the similar pattern of sounds in its words. It makes tongue twister challenging and interesting. It is fun how we have to pronounce the similar pattern words quickly.

According to Machackova (2012), tongue twisters are phrases or sentences which are difficult to pronounce because similar sounds occur but provide the students with enjoyable activities at pronunciation practice. Tongue twister is a great and fun way to help the students to try to learn English better. It can make the students’ speech skills stronger. The faster a student can read the tongue twister without slipping up, the stronger his/her language skills become. Tongue twister also stimulates the brain into developing pronunciation skill. The treatment which students go through when they recite tongue twister is not on the oral cavity, but on the brain which generally controls a person’s oral functions. Here is the example of tongue twister:

Through three cheese trees three free fleas flew.
While these fleas flew, freeze breeze blew.

The reason why the researcher chose grade VIII student of Junior High School of SMP Negeri 4 Paluis because the researcher wanted to solve their problem in pronouncing difficult words especially for fricative interdental sounds /ð/ and /θ/ by using tongue twister that is believed to be able to improve pronunciation.
METHODOLOGY

This research was conducted by using quasi-experimental design. Badmus, Okonkwo and Okoh (2012:59) argue, “a quasi-experiment is similar to a true experiment that has subjects, treatment, but uses nonrandomized groups”. Quasi-experimental design is used when randomization is impossible to be applied. Quasi-experimental design is typically easier to set up than true experimental designs. The research design (Cohen, Manion and Morrison 2005:214) is illustrated below,

\[
\begin{align*}
\text{Experimental group} & = O1 \times O2 \\
\text{Control group} & = O3 \quad O4 \\
\text{Where:} & \\
O1 \text{ and } O3 & = \text{pre-test} \\
O2 \text{ and } O4 & = \text{post-test} \\
X & = \text{treatment}
\end{align*}
\]

Population is an important component of research. Gay (1996:112) describes, “population is the group of interest to the researcher, the group to which she or he would like the result of the study to generalize”. Sampling is a specific component of research that is part of the population. The researcher took the sample from the population to get the data easily in conducting her research. Mcmillan (1996:86) states, “sample is a group of subject whom data are collected”.

The population was Grade VIII students of SMP Negeri 4 Palu. In selecting the sample, the researcher used purposive sampling technique. The researcher applied a purposive sampling because of a particular purpose. The researcher wanted to improve the ability of the students in pronouncing English words. Mcmillan (1996:92) states, “in purposive sampling the researcher selects particular elements from the population that will be representative or informative about the topic”. This research was conducted for the class that needed to improve the students’ pronunciation ability based on the researcher’s observation. Teddlie and Yu (2007:81) state, “purposive sampling techniques is aimed at generating representative cases”. Based on the researcher’s observation, there were ten classes of Grade VIII students but the class needed treatment to improve the pronunciation ability was VIII Semangka of SMP Negeri 4 Palu. VIII Manggis was the control group which was taught by the English teacher.
After getting the data, the researcher computed the data by using statistical formula. The formula by Purwanto (1987:102) is as follows:

\[NP = \frac{R}{SM} \times 100 \]

Where:

- \(NP \) = standard score
- \(R \) = obtained score
- \(SM \) = maximum score
- 100 = constant number

The researcher used the five scale percentage categories of individual student’s ability, as in the following.

<table>
<thead>
<tr>
<th>Levels</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>85%-100%</td>
<td>Very Good</td>
</tr>
<tr>
<td>75%-84%</td>
<td>Good</td>
</tr>
<tr>
<td>60%-74%</td>
<td>Fair</td>
</tr>
<tr>
<td>40%-59%</td>
<td>Bad</td>
</tr>
<tr>
<td>0%-39%</td>
<td>Fail</td>
</tr>
</tbody>
</table>

(Nurgiyantoro, 1995: 399)

Determining the classical students’ ability in pronunciation, the researcher measured the students’ scores with the following formula by Hatch and Farhady (1982:55):

1. The classical students’ ability of experimental group

\[\bar{X} = \frac{\sum x}{N} \]

Where:

- \(\bar{X} \) = the classical students’ ability
- \(\sum x \) = the amount of students’ score
- \(N \) = the number of students

2. The classical students’ ability of control group

\[\bar{X} = \frac{\sum y}{N} \]

Where:
The researcher calculated the mean of derivation of the experimental group and the control group. After computing the mean score of the pre-test and post-test, the research used the mean score of deviation by using Arikunto’s (2006:313) formula as follows:

1. The formula used for the experimental group is:

\[M_x = \frac{\sum x}{N} \]

2. The formula used for control group is:

\[M_y = \frac{\sum y}{N} \]

Where:

- \(M_x \) = mean score of deviation of experimental group
- \(M_y \) = mean score of deviation of control group
- \(\sum x \) = sum Scores of experimental group
- \(\sum y \) = sum Scores of control group
- \(N \) = number of students in each group

Next, the research used square deviation by using formula by Arikunto (2006:312) as follows:

1. The formula for the experimental group is:

\[\sum x^2 = \sum x^2 - \frac{(\sum x)^2}{N} \]

2. The formula for the control group is:

\[\sum y^2 = \sum y^2 - \frac{(\sum y)^2}{N} \]

Where:

- \(\sum x^2 \) = the square deviation sum of experimental group
- \(\sum y^2 \) = the square deviation sum of control group
- \(\sum x \) = the score sum of experimental group
- \(\sum y \) = the score sum of control group
- \(N \) = the total number of students

The last, the researcher applied them into t-test formula to find out whether there is any effect of tongue twister in improving the students’ pronunciation or not. The formula by Arikunto (2006:311) is used as in the following:
\[t = \frac{M_x - M_y}{\sqrt{\frac{\sum x^2 + \sum y^2}{n_x + n_y - 2} \left[\frac{1}{n_x} + \frac{1}{n_y} \right]}} \]

Where:
- \(M_x \) = Mean of experimental group
- \(M_y \) = Mean of control group
- \(\sum x \) = Sum of squares on experimental group
- \(\sum y \) = Sum of squares on control group
- \(n_x \) = Number of experimental group
- \(n_y \) = Number of control group

FINDINGS

Pre-test was given on May 19\(^{th}\) 2015 for the experimental and the control group. The researcher gave eight times treatment by using tongue twister for the experimental group while the control group was taught by the teacher by using the technique that the teacher usually use in teaching. The post-test was given on June 13\(^{th}\) 2015. In analyzing the data of the pre-test to find out the ability of the students before the treatment for both experimental group and control group, the researcher presents the data in table. The first one is the experimental group, the second one is control group.

From the data, the researcher applied the formula to count the classical students’ ability calculation as follows:

1. Experimental Group
 \[\bar{X} = \frac{\sum x}{N} = \frac{93.3}{26} = 3.6 \]

2. Control Group
 \[\bar{X} = \frac{\sum y}{N} = \frac{50}{26} = 1.9 \]

The classical students’ ability of the pre-test of the experimental group was 3.6 and control group was 1.9. It indicates that the ability of the students of the experimental group and the control group was low and nearly equal before the researcher conducted the treatment.
After the researcher gave the treatment for eight times in the experimental group, the researcher gave post-test to both the experimental and the control group. The calculation is as follows:

1. Experimental Group
 \[\bar{X} = \frac{\sum x_2}{N} = \frac{500.1}{26} = 19.2 \]

2. Control Group
 \[\bar{X} = \frac{\sum y_2}{N} = \frac{103.3}{26} = 3.97 \]

Table 2
The Students’ Score and Deviation of Pre-test and Post-test of Experimental Group

<table>
<thead>
<tr>
<th>No.</th>
<th>Initials</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Deviation</th>
<th>Square Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AF</td>
<td>0.0</td>
<td>13.3</td>
<td>13.3</td>
<td>176.9</td>
</tr>
<tr>
<td>2</td>
<td>AFP</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>AN</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>AP</td>
<td>0.0</td>
<td>6.7</td>
<td>6.7</td>
<td>44.9</td>
</tr>
<tr>
<td>5</td>
<td>DNF</td>
<td>0.0</td>
<td>40.0</td>
<td>40.0</td>
<td>160.0</td>
</tr>
<tr>
<td>6</td>
<td>FT</td>
<td>0.0</td>
<td>17.7</td>
<td>17.7</td>
<td>313.3</td>
</tr>
<tr>
<td>7</td>
<td>HF</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>IBD</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>IR</td>
<td>0.0</td>
<td>6.7</td>
<td>6.7</td>
<td>44.9</td>
</tr>
<tr>
<td>10</td>
<td>KN</td>
<td>0.0</td>
<td>10.0</td>
<td>10.0</td>
<td>100.0</td>
</tr>
<tr>
<td>11</td>
<td>MAR</td>
<td>0.0</td>
<td>6.7</td>
<td>6.7</td>
<td>44.9</td>
</tr>
<tr>
<td>12</td>
<td>MAF</td>
<td>13.3</td>
<td>13.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>MAT</td>
<td>66.0</td>
<td>10.0</td>
<td>3.4</td>
<td>11.6</td>
</tr>
<tr>
<td>14</td>
<td>MAZ</td>
<td>0.0</td>
<td>10.0</td>
<td>10.0</td>
<td>100.0</td>
</tr>
<tr>
<td>15</td>
<td>MDW</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>MR</td>
<td>0.0</td>
<td>3.3</td>
<td>3.3</td>
<td>10.9</td>
</tr>
<tr>
<td>17</td>
<td>ND</td>
<td>0.0</td>
<td>26.7</td>
<td>26.7</td>
<td>712.9</td>
</tr>
<tr>
<td>18</td>
<td>PNA</td>
<td>0.0</td>
<td>36.7</td>
<td>36.7</td>
<td>1346.9</td>
</tr>
<tr>
<td>19</td>
<td>RA</td>
<td>16.6</td>
<td>33.3</td>
<td>16.7</td>
<td>278.9</td>
</tr>
<tr>
<td>20</td>
<td>RS</td>
<td>13.3</td>
<td>26.7</td>
<td>13.4</td>
<td>179.6</td>
</tr>
<tr>
<td>21</td>
<td>SDR</td>
<td>3.3</td>
<td>53.3</td>
<td>50.0</td>
<td>2500.0</td>
</tr>
<tr>
<td>22</td>
<td>SH</td>
<td>0.0</td>
<td>30.0</td>
<td>30.0</td>
<td>900.0</td>
</tr>
<tr>
<td>23</td>
<td>TD</td>
<td>10.0</td>
<td>13.3</td>
<td>3.3</td>
<td>10.9</td>
</tr>
<tr>
<td>24</td>
<td>UL</td>
<td>16.7</td>
<td>20.0</td>
<td>3.3</td>
<td>11.2</td>
</tr>
<tr>
<td>25</td>
<td>WAL</td>
<td>10.0</td>
<td>60.0</td>
<td>50.0</td>
<td>2500.0</td>
</tr>
<tr>
<td>26</td>
<td>MY</td>
<td>0.0</td>
<td>66.7</td>
<td>66.7</td>
<td>4448.9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>414.6</td>
<td></td>
<td></td>
<td>15336.5</td>
</tr>
</tbody>
</table>
Based on the table above, the researcher computed the students’ means score of the deviation of the pre-test and the post-test of the experimental group using the formula as follows:

\[Mx = \frac{\sum x}{N} = \frac{414.64}{26} = 15.95 \]

The mean score of the deviation of pre-test and post-test of the experimental group was 15.95.

Table 3
The Students’ Score and Deviation in Pre-test and Post-test of Control Group

<table>
<thead>
<tr>
<th>No</th>
<th>Initials</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Deviation</th>
<th>Square Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>APG</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>APW</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>AT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>DNS</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>DT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>FA</td>
<td>13.3</td>
<td>13.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>FB</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>FH</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>FZ</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>IPA</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>JM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>KR</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>LFN</td>
<td>3.3</td>
<td>20.0</td>
<td>16.7</td>
<td>278.9</td>
</tr>
<tr>
<td>14</td>
<td>MBP</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>MM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>MMK</td>
<td>6.7</td>
<td>16.7</td>
<td>10.0</td>
<td>100.0</td>
</tr>
<tr>
<td>17</td>
<td>MRA</td>
<td>3.3</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>MRM</td>
<td>0.0</td>
<td>3.3</td>
<td>3.3</td>
<td>10.9</td>
</tr>
<tr>
<td>19</td>
<td>MRS</td>
<td>6.7</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>MRV</td>
<td>16.7</td>
<td>30.0</td>
<td>13.3</td>
<td>176.9</td>
</tr>
<tr>
<td>21</td>
<td>MSP</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>RM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>TAW</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>24</td>
<td>SF</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>SS</td>
<td>0.0</td>
<td>10.0</td>
<td>10.0</td>
<td>100.0</td>
</tr>
<tr>
<td>26</td>
<td>SB</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>53.3</td>
<td>666.7</td>
</tr>
</tbody>
</table>

Based on the table above, the researcher computed the mean score of the deviation of the pre-test and post-test of control group as follows:
\[
M_y = \frac{\sum y}{N} = \frac{53.3}{26} = 2.05
\]

The mean score of the deviation of the control group pre-test and post-test was 2.05.

The sum of square deviation is calculated as follows:

1. The sum of square deviation of the experimental group
\[
\sum x^2 = \sum x^2 - \frac{\left(\sum x\right)^2}{N} = 15336.5 - \frac{(414.64)^2}{26} \\
= 15336.5 - 6612.55 \\
= 8723.95
\]

2. The sum of square deviation of the control group
\[
\sum x^2 = \sum x^2 - \frac{\left(\sum x\right)^2}{N} = 666.67 - \frac{(53.3)^2}{26} \\
= 666.67 - 109.26 \\
= 557.405
\]

To find out the difference between the experimental group and control group, the researcher used t-counted formula by Arikunto (2006:311) as follows:
\[
t = \frac{M_x - M_y}{\sqrt{\left(\frac{\sum x^2 - \sum y^2}{N_x + N_y - 2}\right) \left(\frac{1}{N_x} + \frac{1}{N_y}\right)}}
\]
\[
t = \frac{15.95 - 2.05}{\sqrt{\left(\frac{8723.95 - 557.405}{26 + 26 - 2}\right) \left(\frac{1}{26} + \frac{1}{26}\right)}}
\]
\[
t = \frac{15.95 - 2.05}{\sqrt{13.9}}
\]
\[
t = \sqrt{163.39}(0.08)
\]
\[
t = 3.61
\]
\[
t = 3.85
\]

The t-counted of this research is 3.85.

In order to know that the hypothesis is accepted or rejected, the researcher used t-counted formula. If the t-counted is higher than t-table, it means that the hypothesis of the
research is accepted, while if the t-counted is lower than the t-table, it means the hypothesis of the research is rejected.

Based on the research, the researcher found that the t-counted 3.85 is higher than the t-table 2.06 by applying the degree of freedom (df) = N-1 = 26-1 = 25 with the level of significant 0.05. In conclusion, the hypothesis of the research that the application of tongue twister can improve pronunciation of the eight grade students of SMP N 4 Palu is accepted.

DISCUSSION

By doing the preliminary research in the first time, the researcher found that most students still got difficulties to pronounce some English words, especially in interdental “th” sounds. It was because the school teacher did not put much emphasize on their pronunciation. The teacher focused on how to answer the task in the text book.

According to the result of the students’ pre-test, it shows that most students could not pronounce the words in the test. Many students could not get score in the pre-test. It means that almost all of the students could not pronounce English words correctly.

During the treatment, the researcher taught pronunciation eight times. In each treatment, the researcher explained the objectives that would be expected. The researcher explained about the tongue twister and the “th” sound. The researcher applied tongue twister to practice their tongue in pronouncing the “th” sounds. The students were asked to find the words that contained “th” sound and practice it. Then, researcher found that the students got progress in pronunciation even though several of the students still cannot pronounce the words on their own. Several students could pronounce the words if the researcher asked the students to pronounce together or pronounce with their partner.

Furthermore, the post-test was held after the students in the experimental group were given the treatment eight times. The percentage of the post-test of the experimental group shows that about 80% of the students could pronounce several words in the test correctly, while the result of the control group is only 31%. The mean score of the experimental groups increases from 3.6 to 19.2. The t-counted result (3.85) is higher than the t-table (2.06). From these findings, the researcher concludes tongue twister can improve the students’ pronunciation.

Referring to the findings above, the researcher relates them to the previous studies done by Machackova (2012) and Kurniawan (2012). They have proven that tongue twister could improve the students’ pronunciation. Furthermore, Machackova found that tongue
tongue twister can improve the pronunciation of the students although the production of the sound improved in only about 30%. Meanwhile, Kurniawan showed a significant improvement of the students’ pronunciation by looking at the t-counted which is 32.5 with the value of the t-table is 2.042. It means that tongue twister can improve the students’ pronunciation of interdental sound of the students of SMP Negei 4 Palu.

CONCLUSIONS AND SUGGESTIONS

Based on the result of the test, the researcher found that the students’ pronunciation increased. It was proved by looking at the t-counted (3.85) which was higher than the t-table (2.06). There is also much progress on the students’ mean scores from 3.6 in the pre-test to 19.2 in the post-test. It is also supported by the previous studies. The researcher concludes that tongue twister can improve the pronunciation of “th” sound by using tongue twister of grade VIII students of SMP Negeri 4 Palu.

The researcher needs to suggest that firstly, teachers should use a teaching learning activity which does not only emphasize on the students’ textbook tasks but also their pronunciation. The application of tongue twister is one of the alternatives in teaching pronunciation, especially interdental sounds. However, this technique needs much time in using this. Secondly, students need to train and practice their pronunciation by applying tongue twister. It is fun and interesting. They have to be confident to express their pronunciation. Thirdly, the application of tongue twister is one of the many ways in teaching pronunciation. Other researchers can use this technique for their own investigation.

REFERENCES

