IMPROVING STUDENTS ABILITY IN PREDICTING SOUNDS REPRESENTED BY LETTER G AND C THROUGH AUTHENTIC MATERIALS

Moh.Isra¹, Hasan Basri², Hastini³

Abstract

The research was aimed at proving the use of authentic materials which can improve students’ ability in predicting English sound especially sounds from letter g and c. True-experimental research design was applied in this research. The research population was 312 of the eleventh grade students at SMAN 4 Palu. The sample of this research was selected by random sampling technique. The instrument of data collection was the test which was administered to the students twice as pre-test and post-test. The data were analyzed statistically in order to know the significance of the achievement of the students in pre-test and post-test. Referring to the t-table value by applying the 0.05 level of significance and (31+31-2 = 60) the degree of freedom (df), the researcher found the value of t-counted (4.65) was greater than t-table (2.000). The result of the data analysis showed that authentic material as a medium is effective to improve students’ ability in predicting English sound that represented by letter g and c.

Key words: Prediction; Sound; Letter G; Letter C; Authentic Material.

INTRODUCTION

Pronunciation is one of the language components that must be mastered by the learners in order to be successful in communication. Having good pronunciation also can help the students to transfer their ideas smoothly and can make conversation understandable. According to Yates (2002:1) “Learners with good pronunciation in English are more likely to be understood even if they make errors in other areas, whereas learners whose pronunciation is difficult to understand will not be understood even if their grammar is perfect”. It means good pronunciation can build good speaking skill since the utterances of the speaker can be easily understood by the interlocutor. Pronunciation is related to the sound and spelling that made by pronouncing the words since sound has important role on how people pronounce something. Sound is a medium

¹ E-mail : Mohammedizra@hotmail.com
² E-mail : hbasri99@yahoo.com
³ E-mail : tini_firhansyah@yahoo.com
where the information is communicated, thus it is important to be studied by the students (Sulaiman 2004).

There is no simple relationship between spellings and sounds, since English is recognized as inconsistent language. As stated by Basri and Hastini (2011:33) “Spelling pronunciation is the most common type of pronunciation errors for Indonesian learners of English”. That is why many Indonesian students tend to generalize the pronunciation or the sounds of some letters of English such as *bridge* /dʒrɪdʒ/ into (dʒɪdʒ).

Based on the preliminary research at the eleventh grade students of SMAN 4 Palu, there were many students that could not pronounce some consonants of English correctly in the classroom due to the low motivation to practice English. Additionally, students became afraid of learning English since they were unconfident and afraid of making mistake in pronouncing the words. Some students often generalized when pronouncing words that contain letter g sound /g/ with sound /dʒ/ for example, word *legging, regular, argue*, since the low ability in predicting word sounds, they could not predict it in the right way. They pronounced as (*Lejjing, rejular, arjue*) and other letter g words with /dʒ/ while those words should be pronounced with /g/. It is also happened in pronouncing letter c which /k/ four sounds there are /kl/, /sl/, /tʃl/, and /fl/ like in words “cold, coin and scope” is pronounced /klard/, /slæn/ and /skæp/ respectively. It sometimes becomes a trigger students mispronounced other letter c in words that has letter c like “cynical, dicey, and descend”. Although the students generalized the words, they pronounced almost all words that have letter c with sound /kl/.

Related to the effective way in predicting sounds in English, there are many approaches, methods, techniques and media that can be used by teachers. One of the media that is very useful and can help the students to improve their pronunciation is authentic material. The authentic materials are the materials that have been produced originally to fulfil some social purposes in the language community.

Authentic materials are the resources both written and oral created by native speakers of target language for non-native speakers. Authentic materials are very wide materials that can be found from internet or from the real native speaker. It delivers different ways in knowing the target language. The important principle of communicative language teaching is that authentic language should be used in instruction whenever possible (Omaggio – Hadley, 1993). Based on that definition, the real meaning of authentic material is the real language; produced for the
native speakers; designed without the teaching purposes. In this sense, there are a large amount of authentic materials in our life such as newspaper and magazine articles, TV and radio broadcast, daily conversations, meetings, documents, speeches, songs, and films. One of the most useful authentic materials is taken from the internet.

The researcher believes that the use of authentic materials are very useful to be the material that can help the eleventh grade students at SMAN 4 Palu to improve their ability in predicting English word sounds especially in pronouncing complicated consonant such as letter g and c since authentic materials can help the students to be more familiar with the real pronunciation of native speaker. Electronic dictionary which has recorded real pronunciation of English words is one of the authentic materials that can support better pronunciation.

Based on the statement above, the researcher formulated a research question as follows: Can the use of Authentic Materials improve students’ ability in predicting sounds represented by letter g and c of eleventh grade students at SMAN 4 Palu? It is to find out the use of authentic materials can improve students’ ability in predicting sounds represented by letter G and C of the eleventh grade students at SMAN 4 Palu.

METHODOLOGY

In conducting this research, the researcher used true experimental research design. The researcher applied the study based on research design recommended by Hatch & Farhady (1982:22) as follows:

\[
\begin{align*}
G_1 & \quad T_1 & \quad X & \quad T_2 \\
G_2 & \quad T_1 & \quad T_2
\end{align*}
\]

Where:
- \(G_1 \) = experimental group
- \(G_2 \) = control group
- \(T_1 \) = pre-test
- \(X \) = treatment
- \(T_2 \) = post-test

Population is the area that the researcher was trying to get information from. In this study, the population was the eleventh grade students of SMA Negeri 4 Palu consisting of 10 classes. Each class consists of 31 up to 37 students. The total number of the eleventh grade students of SMA Negeri 4 Palu was 312 students. The sample of this research was chosen through cluster random sampling. The researcher wrote each name of the eleventh grade classes in the piece of paper and put it into a box. Then, the researcher shook the box until one of the
paper fell out. The first paper which he took was the experimental group and the second was the control group. The experimental group was XI IPS D and the control group was XI IPS A.

Based on the title, the researcher used two research variables in conducting this research. Those were dependent and independent variables. Cresswell (2009:50) explains “A dependent variable is a feature that depends on the independent variable, while independent variable is a feature that cause, influence, or affects outcomes”. Therefore, the dependent variable of this research was the prediction of sounds represented by letter g and c of the eleventh grade students of SMA Negeri 4 Palu, while the independent variable was the use of authentic materials as the media.

In conducting this research, the researcher administered test. Before conducting treatment, the researcher distributed pre-test to both experimental and control groups. The tests consist of 25 items in 2 different types. The first part consists of 15 items of pronouncing the list of words which have 1 score for each number. The second part consists of 10 items of listening and circling the words.

The researcher applied treatment after giving the pre-test to both experimental and control groups. The researcher taught both experimental and control groups, yet the authentic materials as media were applied in the experimental group. The control group was taught with the material that was used by their teacher. Then, the researcher gave the post-test in order to get data about the effect of the treatment.

The result of test was analyzed statistically. First the researcher computed the individual score of students by using the formula proposed by (Arikunto, 2006:308):

$$\sum = \frac{X}{n} \times 100$$

Where:

- \sum = standard score
- X = students score
- n = maximum score
- 100 = constant number

The researcher computed the mean score of each test from each group by using formula proposed by Ary, et al. (2010:108-109):
When the value of mean of each group (both pre-test and post-test) was obtained, the researcher computed the value of deviation to get the value of standard error. The formula stated below was quoted from Ary, et al. (2010:115 & 171).

a. Formula of Deviation

\[x = X - \bar{X} \]

Where:
- \(x \) = deviation score
- \(X \) = raw score (student’s score)
- \(\bar{X} \) = mean

b. Formula of Standard Error

\[S_{x_1-x_2} = \sqrt{\frac{\sum x_1^2 + \sum x_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)} \]

Where:
- \(S_{x_1-x_2} \) = standard error of the difference between two means
- \(n_1 \) = number of cases in group 1
- \(n_2 \) = number of cases in group 2
- \(\sum x_1^2 \) = sum of the square deviation scores in group 1
- \(\sum x_2^2 \) = sum of the squared deviation scores in group 2

Furthermore, term ‘group 1’ and ‘group 2’ would be used in elaborating the obtained data. Term ‘group 1’ refers to experimental group and term ‘group 2’ refers to control group. The researcher had to compute the standard error since it includes in the formula of t-counted. After getting the value of the standard, the researcher would easily obtained t-test in order to analyze and to answer the research hypothesis of this study. In line with the aim, the researcher used the following formula which proposed by Ary, et al. (2010:171):
$t = \frac{X_1 - X_2}{S_{X_1-X_2}}$

Where:

$X_1 = \text{mean of group 1}$
$X_2 = \text{mean of group 2}$
$S_{X_1-X_2} = \text{standard error}$

RESEARCH FINDINGS

The pre-test was administered to measure the prior knowledge of the students before they got treatment. Then, the researcher gave the post-test to the students after applying authentic materials as media in teaching. The representation of the result from the pre-test of experimental group and control group can be seen in the table 1 and the post-test result of those groups is shown in table 2.

The researcher computed the students’ mean score by using this formula:

$\bar{X} = \frac{\sum x}{N}$
Table 1: The pre-test score of experimental group and control group

<table>
<thead>
<tr>
<th>No</th>
<th>Initial</th>
<th>Pronounce words (0-15)</th>
<th>Listen & circle (0-20)</th>
<th>Max Score</th>
<th>(X_1) (0-100)</th>
<th>Initial</th>
<th>Pronounce words (0-15)</th>
<th>Listen and circle (0-20)</th>
<th>Max Score</th>
<th>(X_2) (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TNO</td>
<td>6</td>
<td>4</td>
<td>35</td>
<td>28.57</td>
<td>IBR</td>
<td>7</td>
<td>8</td>
<td>35</td>
<td>42.86</td>
</tr>
<tr>
<td>2</td>
<td>ONI</td>
<td>5</td>
<td>4</td>
<td>35</td>
<td>25.71</td>
<td>ARF</td>
<td>6</td>
<td>4</td>
<td>35</td>
<td>28.57</td>
</tr>
<tr>
<td>3</td>
<td>SYR</td>
<td>4</td>
<td>6</td>
<td>35</td>
<td>28.57</td>
<td>YEN</td>
<td>6</td>
<td>6</td>
<td>35</td>
<td>34.29</td>
</tr>
<tr>
<td>4</td>
<td>SEP</td>
<td>6</td>
<td>4</td>
<td>35</td>
<td>28.57</td>
<td>MAY</td>
<td>10</td>
<td>4</td>
<td>35</td>
<td>40.00</td>
</tr>
<tr>
<td>5</td>
<td>RRA</td>
<td>5</td>
<td>6</td>
<td>35</td>
<td>31.42</td>
<td>RIN</td>
<td>5</td>
<td>12</td>
<td>35</td>
<td>48.57</td>
</tr>
<tr>
<td>6</td>
<td>YNI</td>
<td>8</td>
<td>14</td>
<td>35</td>
<td>62.85</td>
<td>SIS</td>
<td>5</td>
<td>10</td>
<td>35</td>
<td>42.86</td>
</tr>
<tr>
<td>7</td>
<td>NUR</td>
<td>8</td>
<td>2</td>
<td>35</td>
<td>28.57</td>
<td>SAN</td>
<td>7</td>
<td>4</td>
<td>35</td>
<td>31.43</td>
</tr>
<tr>
<td>8</td>
<td>MER</td>
<td>7</td>
<td>4</td>
<td>35</td>
<td>31.42</td>
<td>RIC</td>
<td>9</td>
<td>12</td>
<td>35</td>
<td>60.00</td>
</tr>
<tr>
<td>9</td>
<td>RAH</td>
<td>6</td>
<td>6</td>
<td>35</td>
<td>34.28</td>
<td>DIN</td>
<td>6</td>
<td>4</td>
<td>35</td>
<td>28.57</td>
</tr>
<tr>
<td>10</td>
<td>SCI</td>
<td>3</td>
<td>6</td>
<td>35</td>
<td>25.71</td>
<td>IND</td>
<td>3</td>
<td>6</td>
<td>35</td>
<td>25.71</td>
</tr>
<tr>
<td>11</td>
<td>ILH</td>
<td>3</td>
<td>8</td>
<td>35</td>
<td>31.42</td>
<td>HER</td>
<td>5</td>
<td>4</td>
<td>35</td>
<td>25.71</td>
</tr>
<tr>
<td>12</td>
<td>ZYT</td>
<td>5</td>
<td>6</td>
<td>35</td>
<td>31.42</td>
<td>RAQ</td>
<td>4</td>
<td>4</td>
<td>35</td>
<td>22.86</td>
</tr>
<tr>
<td>13</td>
<td>AND</td>
<td>4</td>
<td>6</td>
<td>35</td>
<td>28.57</td>
<td>AGU</td>
<td>4</td>
<td>2</td>
<td>35</td>
<td>17.14</td>
</tr>
<tr>
<td>14</td>
<td>RIZ</td>
<td>5</td>
<td>4</td>
<td>35</td>
<td>25.71</td>
<td>WAH</td>
<td>4</td>
<td>10</td>
<td>35</td>
<td>40.00</td>
</tr>
<tr>
<td>15</td>
<td>ABD</td>
<td>2</td>
<td>6</td>
<td>35</td>
<td>22.85</td>
<td>DEF</td>
<td>8</td>
<td>8</td>
<td>35</td>
<td>45.71</td>
</tr>
<tr>
<td>16</td>
<td>SAR</td>
<td>5</td>
<td>4</td>
<td>35</td>
<td>25.71</td>
<td>ANA</td>
<td>9</td>
<td>8</td>
<td>35</td>
<td>48.57</td>
</tr>
<tr>
<td>17</td>
<td>BAS</td>
<td>2</td>
<td>2</td>
<td>35</td>
<td>11.42</td>
<td>SIN</td>
<td>4</td>
<td>4</td>
<td>35</td>
<td>22.86</td>
</tr>
<tr>
<td>18</td>
<td>AMR</td>
<td>5</td>
<td>8</td>
<td>35</td>
<td>37.14</td>
<td>ASM</td>
<td>4</td>
<td>6</td>
<td>35</td>
<td>25.71</td>
</tr>
<tr>
<td>19</td>
<td>ZAI</td>
<td>6</td>
<td>2</td>
<td>35</td>
<td>22.85</td>
<td>AUL</td>
<td>5</td>
<td>14</td>
<td>35</td>
<td>54.29</td>
</tr>
<tr>
<td>20</td>
<td>IMR</td>
<td>3</td>
<td>4</td>
<td>35</td>
<td>20</td>
<td>AMR</td>
<td>7</td>
<td>6</td>
<td>35</td>
<td>37.14</td>
</tr>
<tr>
<td>21</td>
<td>LEN</td>
<td>4</td>
<td>2</td>
<td>35</td>
<td>17.14</td>
<td>FIT</td>
<td>5</td>
<td>6</td>
<td>35</td>
<td>31.43</td>
</tr>
<tr>
<td>22</td>
<td>WIL</td>
<td>3</td>
<td>4</td>
<td>35</td>
<td>20</td>
<td>FAT</td>
<td>4</td>
<td>8</td>
<td>35</td>
<td>34.29</td>
</tr>
<tr>
<td>23</td>
<td>LUT</td>
<td>2</td>
<td>4</td>
<td>35</td>
<td>17.14</td>
<td>FAU</td>
<td>6</td>
<td>10</td>
<td>35</td>
<td>45.71</td>
</tr>
<tr>
<td>24</td>
<td>ROS</td>
<td>5</td>
<td>6</td>
<td>35</td>
<td>31.42</td>
<td>IKA</td>
<td>6</td>
<td>2</td>
<td>35</td>
<td>22.86</td>
</tr>
<tr>
<td>25</td>
<td>SIT</td>
<td>4</td>
<td>10</td>
<td>35</td>
<td>40</td>
<td>REN</td>
<td>4</td>
<td>4</td>
<td>35</td>
<td>22.86</td>
</tr>
<tr>
<td>26</td>
<td>LIN</td>
<td>3</td>
<td>4</td>
<td>35</td>
<td>20</td>
<td>SUT</td>
<td>5</td>
<td>4</td>
<td>35</td>
<td>25.71</td>
</tr>
<tr>
<td>27</td>
<td>DIA</td>
<td>5</td>
<td>6</td>
<td>35</td>
<td>31.42</td>
<td>ANG</td>
<td>7</td>
<td>6</td>
<td>35</td>
<td>37.14</td>
</tr>
<tr>
<td>28</td>
<td>WIR</td>
<td>3</td>
<td>8</td>
<td>35</td>
<td>31.42</td>
<td>NYM</td>
<td>8</td>
<td>4</td>
<td>35</td>
<td>34.29</td>
</tr>
<tr>
<td>29</td>
<td>RAF</td>
<td>6</td>
<td>4</td>
<td>35</td>
<td>28.57</td>
<td>SAM</td>
<td>3</td>
<td>6</td>
<td>35</td>
<td>25.71</td>
</tr>
<tr>
<td>30</td>
<td>ILU</td>
<td>4</td>
<td>4</td>
<td>35</td>
<td>22.85</td>
<td>WAT</td>
<td>6</td>
<td>6</td>
<td>35</td>
<td>34.29</td>
</tr>
<tr>
<td>31</td>
<td>ILF</td>
<td>7</td>
<td>2</td>
<td>35</td>
<td>25.71</td>
<td>ROM</td>
<td>2</td>
<td>6</td>
<td>35</td>
<td>22.86</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>144</td>
<td>160</td>
<td>868.43</td>
<td>174</td>
<td>198</td>
<td>1062.86</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental group \(= \frac{868.43}{31} = 28.01 \) Control group \(= \frac{1062.86}{31} = 34.28 \)
Table 2: The post-test score of experimental group and control group

<table>
<thead>
<tr>
<th>No</th>
<th>Initial</th>
<th>Pronounce words (0-15)</th>
<th>Listen & circle (0-20)</th>
<th>Max Score</th>
<th>X_1 (0-100)</th>
<th>Initial</th>
<th>Pronounce words (0-15)</th>
<th>Listen and circle (0-20)</th>
<th>Max Score</th>
<th>X_2 (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TNO</td>
<td>7</td>
<td>10</td>
<td>35</td>
<td>48.57</td>
<td>IBR</td>
<td>10</td>
<td>14</td>
<td>35</td>
<td>68.57</td>
</tr>
<tr>
<td>2</td>
<td>ONI</td>
<td>13</td>
<td>12</td>
<td>35</td>
<td>71.43</td>
<td>ARF</td>
<td>11</td>
<td>12</td>
<td>35</td>
<td>65.71</td>
</tr>
<tr>
<td>3</td>
<td>SYR</td>
<td>9</td>
<td>12</td>
<td>35</td>
<td>60.00</td>
<td>YEN</td>
<td>9</td>
<td>14</td>
<td>35</td>
<td>65.71</td>
</tr>
<tr>
<td>4</td>
<td>SEP</td>
<td>12</td>
<td>14</td>
<td>35</td>
<td>74.29</td>
<td>MAY</td>
<td>10</td>
<td>8</td>
<td>35</td>
<td>51.43</td>
</tr>
<tr>
<td>5</td>
<td>RRA</td>
<td>10</td>
<td>16</td>
<td>35</td>
<td>74.29</td>
<td>RIN</td>
<td>8</td>
<td>14</td>
<td>35</td>
<td>62.86</td>
</tr>
<tr>
<td>6</td>
<td>YNI</td>
<td>13</td>
<td>12</td>
<td>35</td>
<td>71.43</td>
<td>SIS</td>
<td>8</td>
<td>12</td>
<td>35</td>
<td>57.14</td>
</tr>
<tr>
<td>7</td>
<td>NUR</td>
<td>13</td>
<td>14</td>
<td>35</td>
<td>77.14</td>
<td>SAN</td>
<td>11</td>
<td>18</td>
<td>35</td>
<td>82.86</td>
</tr>
<tr>
<td>8</td>
<td>MER</td>
<td>14</td>
<td>16</td>
<td>35</td>
<td>85.71</td>
<td>RIC</td>
<td>7</td>
<td>18</td>
<td>35</td>
<td>71.43</td>
</tr>
<tr>
<td>9</td>
<td>RAH</td>
<td>15</td>
<td>10</td>
<td>35</td>
<td>71.43</td>
<td>DIN</td>
<td>9</td>
<td>6</td>
<td>35</td>
<td>42.86</td>
</tr>
<tr>
<td>10</td>
<td>SCI</td>
<td>11</td>
<td>16</td>
<td>35</td>
<td>77.14</td>
<td>IND</td>
<td>12</td>
<td>10</td>
<td>35</td>
<td>62.86</td>
</tr>
<tr>
<td>11</td>
<td>ILH</td>
<td>12</td>
<td>12</td>
<td>35</td>
<td>68.57</td>
<td>HER</td>
<td>6</td>
<td>10</td>
<td>35</td>
<td>45.71</td>
</tr>
<tr>
<td>12</td>
<td>ZYT</td>
<td>11</td>
<td>18</td>
<td>35</td>
<td>82.86</td>
<td>RAQ</td>
<td>9</td>
<td>16</td>
<td>35</td>
<td>71.43</td>
</tr>
<tr>
<td>13</td>
<td>AND</td>
<td>14</td>
<td>12</td>
<td>35</td>
<td>74.29</td>
<td>AGU</td>
<td>7</td>
<td>8</td>
<td>35</td>
<td>42.86</td>
</tr>
<tr>
<td>14</td>
<td>RIZ</td>
<td>14</td>
<td>10</td>
<td>35</td>
<td>68.57</td>
<td>WAH</td>
<td>10</td>
<td>12</td>
<td>35</td>
<td>62.86</td>
</tr>
<tr>
<td>15</td>
<td>ABD</td>
<td>12</td>
<td>14</td>
<td>35</td>
<td>74.29</td>
<td>DEF</td>
<td>8</td>
<td>10</td>
<td>35</td>
<td>51.43</td>
</tr>
<tr>
<td>16</td>
<td>SAR</td>
<td>5</td>
<td>8</td>
<td>35</td>
<td>37.14</td>
<td>ANA</td>
<td>7</td>
<td>14</td>
<td>35</td>
<td>60.00</td>
</tr>
<tr>
<td>17</td>
<td>BAS</td>
<td>12</td>
<td>12</td>
<td>35</td>
<td>68.57</td>
<td>SIN</td>
<td>6</td>
<td>10</td>
<td>35</td>
<td>45.71</td>
</tr>
<tr>
<td>18</td>
<td>AMR</td>
<td>13</td>
<td>10</td>
<td>35</td>
<td>65.71</td>
<td>ASM</td>
<td>9</td>
<td>8</td>
<td>35</td>
<td>48.57</td>
</tr>
<tr>
<td>19</td>
<td>ZAI</td>
<td>11</td>
<td>14</td>
<td>35</td>
<td>71.43</td>
<td>AUL</td>
<td>10</td>
<td>16</td>
<td>35</td>
<td>74.29</td>
</tr>
<tr>
<td>20</td>
<td>IMR</td>
<td>11</td>
<td>10</td>
<td>35</td>
<td>60.00</td>
<td>AMR</td>
<td>7</td>
<td>8</td>
<td>35</td>
<td>42.86</td>
</tr>
<tr>
<td>21</td>
<td>LEN</td>
<td>13</td>
<td>16</td>
<td>35</td>
<td>82.86</td>
<td>FIT</td>
<td>8</td>
<td>14</td>
<td>35</td>
<td>62.86</td>
</tr>
<tr>
<td>22</td>
<td>WIL</td>
<td>11</td>
<td>12</td>
<td>35</td>
<td>65.71</td>
<td>FAT</td>
<td>6</td>
<td>10</td>
<td>35</td>
<td>45.71</td>
</tr>
<tr>
<td>23</td>
<td>LUT</td>
<td>12</td>
<td>10</td>
<td>35</td>
<td>62.86</td>
<td>FAU</td>
<td>9</td>
<td>12</td>
<td>35</td>
<td>60.00</td>
</tr>
<tr>
<td>24</td>
<td>ROS</td>
<td>14</td>
<td>14</td>
<td>35</td>
<td>80.00</td>
<td>IKA</td>
<td>7</td>
<td>6</td>
<td>35</td>
<td>37.14</td>
</tr>
<tr>
<td>25</td>
<td>SIT</td>
<td>10</td>
<td>12</td>
<td>35</td>
<td>62.86</td>
<td>REN</td>
<td>8</td>
<td>6</td>
<td>35</td>
<td>40.00</td>
</tr>
<tr>
<td>26</td>
<td>LIN</td>
<td>14</td>
<td>16</td>
<td>35</td>
<td>85.71</td>
<td>SUT</td>
<td>11</td>
<td>18</td>
<td>35</td>
<td>82.86</td>
</tr>
<tr>
<td>27</td>
<td>DIA</td>
<td>13</td>
<td>16</td>
<td>35</td>
<td>82.86</td>
<td>ANG</td>
<td>6</td>
<td>8</td>
<td>35</td>
<td>40.00</td>
</tr>
<tr>
<td>28</td>
<td>WIR</td>
<td>11</td>
<td>18</td>
<td>35</td>
<td>82.86</td>
<td>NYM</td>
<td>7</td>
<td>10</td>
<td>35</td>
<td>48.57</td>
</tr>
<tr>
<td>29</td>
<td>RAF</td>
<td>12</td>
<td>12</td>
<td>35</td>
<td>68.57</td>
<td>SAM</td>
<td>8</td>
<td>8</td>
<td>35</td>
<td>45.71</td>
</tr>
<tr>
<td>30</td>
<td>ILU</td>
<td>13</td>
<td>14</td>
<td>35</td>
<td>77.14</td>
<td>WAT</td>
<td>10</td>
<td>16</td>
<td>35</td>
<td>74.29</td>
</tr>
<tr>
<td>31</td>
<td>ILF</td>
<td>13</td>
<td>16</td>
<td>35</td>
<td>82.86</td>
<td>ROM</td>
<td>11</td>
<td>12</td>
<td>35</td>
<td>65.71</td>
</tr>
<tr>
<td>TOTAL</td>
<td>368</td>
<td>408</td>
<td>2217.15</td>
<td></td>
<td></td>
<td></td>
<td>265</td>
<td>358</td>
<td></td>
<td>1780</td>
</tr>
</tbody>
</table>

Control group = $\frac{1780}{31} = 57.41$

Experimental group = $\frac{2217.15}{31} = 71.52$
Table 3: Deviation and square deviation of experimental & control groups post-test

<table>
<thead>
<tr>
<th>No</th>
<th>Initial</th>
<th>X_1</th>
<th>$x_1^2 ,(X_1-X_2)$</th>
<th>X_2</th>
<th>$x_2^2 ,(X_2-X_3)$</th>
<th>X_3^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TNO</td>
<td>48.57</td>
<td>-22.95</td>
<td>526.70</td>
<td>68.57</td>
<td>11.16</td>
</tr>
<tr>
<td>2</td>
<td>ONI</td>
<td>71.43</td>
<td>-0.09</td>
<td>0.01</td>
<td>65.71</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>SYR</td>
<td>60.00</td>
<td>-11.52</td>
<td>132.71</td>
<td>65.71</td>
<td>8.3</td>
</tr>
<tr>
<td>4</td>
<td>SEP</td>
<td>74.29</td>
<td>2.77</td>
<td>7.67</td>
<td>51.43</td>
<td>-5.98</td>
</tr>
<tr>
<td>5</td>
<td>RRA</td>
<td>74.29</td>
<td>2.77</td>
<td>7.67</td>
<td>62.86</td>
<td>5.45</td>
</tr>
<tr>
<td>6</td>
<td>YNI</td>
<td>71.43</td>
<td>-0.09</td>
<td>0.01</td>
<td>57.14</td>
<td>-0.27</td>
</tr>
<tr>
<td>7</td>
<td>NUR</td>
<td>77.14</td>
<td>5.62</td>
<td>31.58</td>
<td>82.86</td>
<td>25.45</td>
</tr>
<tr>
<td>8</td>
<td>MER</td>
<td>85.71</td>
<td>14.19</td>
<td>201.36</td>
<td>71.43</td>
<td>14.02</td>
</tr>
<tr>
<td>9</td>
<td>RAH</td>
<td>71.43</td>
<td>-0.09</td>
<td>0.01</td>
<td>42.86</td>
<td>-14.55</td>
</tr>
<tr>
<td>10</td>
<td>SCI</td>
<td>77.14</td>
<td>5.62</td>
<td>31.58</td>
<td>62.86</td>
<td>5.45</td>
</tr>
<tr>
<td>11</td>
<td>ILH</td>
<td>68.57</td>
<td>-2.95</td>
<td>8.70</td>
<td>45.71</td>
<td>-11.7</td>
</tr>
<tr>
<td>12</td>
<td>ZYT</td>
<td>82.86</td>
<td>11.34</td>
<td>128.60</td>
<td>71.43</td>
<td>14.02</td>
</tr>
<tr>
<td>13</td>
<td>AND</td>
<td>74.29</td>
<td>2.77</td>
<td>7.67</td>
<td>42.86</td>
<td>-14.55</td>
</tr>
<tr>
<td>14</td>
<td>RIZ</td>
<td>68.57</td>
<td>-2.95</td>
<td>8.70</td>
<td>62.86</td>
<td>5.45</td>
</tr>
<tr>
<td>15</td>
<td>ABD</td>
<td>74.29</td>
<td>2.77</td>
<td>7.67</td>
<td>51.43</td>
<td>-5.98</td>
</tr>
<tr>
<td>16</td>
<td>SAR</td>
<td>37.14</td>
<td>-34.38</td>
<td>1181.98</td>
<td>60.00</td>
<td>2.59</td>
</tr>
<tr>
<td>17</td>
<td>BAS</td>
<td>68.57</td>
<td>-2.95</td>
<td>8.70</td>
<td>45.71</td>
<td>-11.7</td>
</tr>
<tr>
<td>18</td>
<td>AMR</td>
<td>65.71</td>
<td>-5.81</td>
<td>33.76</td>
<td>48.57</td>
<td>-8.84</td>
</tr>
<tr>
<td>19</td>
<td>ZAI</td>
<td>71.43</td>
<td>-0.09</td>
<td>0.01</td>
<td>74.29</td>
<td>16.88</td>
</tr>
<tr>
<td>20</td>
<td>IMR</td>
<td>60.00</td>
<td>-11.52</td>
<td>132.71</td>
<td>42.86</td>
<td>-14.55</td>
</tr>
<tr>
<td>21</td>
<td>LEN</td>
<td>82.86</td>
<td>11.34</td>
<td>128.60</td>
<td>62.86</td>
<td>5.45</td>
</tr>
<tr>
<td>22</td>
<td>WIL</td>
<td>65.71</td>
<td>-5.81</td>
<td>33.76</td>
<td>45.71</td>
<td>-11.7</td>
</tr>
<tr>
<td>23</td>
<td>LUT</td>
<td>62.86</td>
<td>-8.66</td>
<td>75.00</td>
<td>60.00</td>
<td>2.59</td>
</tr>
<tr>
<td>24</td>
<td>ROS</td>
<td>80.00</td>
<td>8.48</td>
<td>71.91</td>
<td>37.14</td>
<td>-20.27</td>
</tr>
<tr>
<td>25</td>
<td>SIT</td>
<td>62.86</td>
<td>-8.66</td>
<td>75.00</td>
<td>40.00</td>
<td>-17.41</td>
</tr>
<tr>
<td>26</td>
<td>LIN</td>
<td>85.71</td>
<td>14.19</td>
<td>201.36</td>
<td>82.86</td>
<td>25.45</td>
</tr>
<tr>
<td>27</td>
<td>DIA</td>
<td>82.86</td>
<td>11.34</td>
<td>128.60</td>
<td>40.00</td>
<td>-17.41</td>
</tr>
<tr>
<td>28</td>
<td>WIR</td>
<td>82.86</td>
<td>11.34</td>
<td>128.60</td>
<td>48.57</td>
<td>-8.84</td>
</tr>
<tr>
<td>29</td>
<td>RAF</td>
<td>68.57</td>
<td>-2.95</td>
<td>8.70</td>
<td>45.71</td>
<td>-11.7</td>
</tr>
<tr>
<td>30</td>
<td>ILU</td>
<td>77.14</td>
<td>5.62</td>
<td>31.58</td>
<td>74.29</td>
<td>16.88</td>
</tr>
<tr>
<td>31</td>
<td>ILF</td>
<td>82.86</td>
<td>11.34</td>
<td>128.60</td>
<td>65.71</td>
<td>8.3</td>
</tr>
<tr>
<td>Total</td>
<td>2217.15</td>
<td>3469.50</td>
<td>1780</td>
<td>5149.47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$\sum x_1^2 = 3469.50 \quad \sum x_2^2 = 5149.47$$
After calculating the deviation and square deviation, the researcher counted the standard error of the difference between two means of two groups. Counting the standard error had an aim at computing the \(t\)-counted which functions to prove that the variables of this study had relationship and the independent variable had a consequence toward the dependent variable.

\[
S_{X_1 - X_2} = \sqrt{\frac{\sum x_1^2 + \sum x_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}
\]

\[
= \sqrt{\frac{3469.50 + 5149.47}{31 + 31 - 2} \left(\frac{1}{31} + \frac{1}{31} \right)}
\]

\[
= \sqrt{\frac{8618.97}{60} \left(0.032 + 0.032 \right)}
\]

\[
= \sqrt{143.64 \left(0.064 \right)}
\]

\[
= \sqrt{9.19}
\]

\[
= 3.03
\]

Counting the standard error, the researcher found that the value was 3.03. This value was used to count \(t\)-counted. The following was the computation of \(t\)-counted:

\[
t = \frac{X_1 - X_2}{S_{X_1 - X_2}}
\]

\[
= \frac{71.52 - 57.41}{3.03}
\]

\[
= \frac{14.11}{3.03}
\]

\[
= 4.65
\]

The result of counting \(t\)-counted value is 4.65. If the \(t\)-counted is higher than \(t\)-table, the research hypothesis will be accepted. Yet, if the \(t\)-table is higher than \(t\)-counted, the research hypothesis will be rejected. Thus, the researcher concludes that the research hypothesis is accepted since the \(t\)-counted is greater than \(t\)-table.
DISCUSSION

The researcher limited this research on predicting the sound represented by letter g and c and the use of authentic materials. The materials which used are the authentic listening and reading materials. Based on the result of pre-test in both groups, none of the students could get the standard score of English subject (73). This result proved that the students still got difficulties in predicting sounds represented by letter g and c. The pre-test result showed that letter c became the most difficult to predict by the students since letter c has 4 variant sounds; /♦♦/, /♦/, /s/, and /&/, while letter g has 2 variant sounds; /g/ and /ɔ/ . There were 78.68% of students in both groups did wrong prediction on words containing letter c since the 4 variant sounds from letter c gave influence to students’ ability in predicting the sounds. Among those variance, /♦/ was the most difficult one. It was difficult for students to differentiate the letter c, whether it pronounced /♦/ or /ɔ/ like in word “ocean”, most of the students pronounced it as /ɔ/ rather than /♦/. In addition, they rarely found the word containing letter c that pronounced as /♦/. The second variance which is being difficult to predict was /♦♦/. Mostly students predict diagraph “ch” as /♦♦/. For example, they pronounced word “machine” /ɔ ★♦♦♦♦/ as /ɔ ★♦♦♦♦/ and word “chemistry” /ɔ ★♦♦♦♦♦♦♦♦♦♦♦♦♦♦/ as /ɔ ★♦♦♦♦♦♦♦♦♦♦♦♦♦♦/.

After giving the pre-test, the researcher applied the treatment to the students to solve their problem. The treatment was done in eight meetings. The researcher entered in both experimental and control groups twice a week. Applying the treatment to the students, the researcher used the authentic materials as medium. In teaching learning process, the students were interested in receiving material particularly some new words. It happened since the researcher gave them some reading passages from novel, western short story, and song script. Sometimes, English songs and electronic dictionary were played to present the real pronunciation from the singers and the native speakers, thus the students can imitate them directly.

Next step, the researcher gave the post-test to the students. There were 48.38% of students in experimental group who got ≥ 73 and 6.45% of them almost got perfect score. However, there were 51.61% of students who got ≤ 73. In contrast, the students’ result in control group shows that 12.90 % of students who got ≥ 73 and 87.09% of them got ≤ 73. Thus, it can be concluded that the post-test result of experimental was increased significantly.
Meanwhile, in control group the result were increased though only two students could achieve the standard score.

Furthermore, the researcher compared his research finding with previous research one which had been done by Sabet (2012). Both this research and pervious research have the same result since they applied authentic materials in teaching English successfully. Besides, they also have differences. The researcher conducted research in predicting sounds of letter g and c, while Sabet (2012) did a research in listening skill. Another difference is the researcher only applied two kinds of test as the instrument to measure students’ understanding about predicting sounds represented by letter g and c, while in Sabet’s research, he used English level test (Oxford Placement Test). He did not only give pre-test and post-test to the students, but also gave students feedback survey. The last difference is on the level. This research was done at Senior High School level, yet Sabet (2012) did research at Elementary School. Thus the researcher can draw statement that the authentic materials media are effective in learning English since it had been applied in teaching listening and pronunciation and in any levels even though it has some differences.

CONCLUSION AND SUGGESTION

Based on the result of data analysis in the previous chapter, the researcher argues that the t-counted value (4.65) is greater than the t-table value (2.000). It can be concluded that the authentic materials can improve students’ ability in predicting sounds represented by letter g and letter c. Additionally, the use of authentic material like newspaper, novel, and English songs in teaching learning activity become a unique style of learning for students.

Having the conclusion above, the researcher adds some suggestions relating to teaching and learning process. First, using authentic materials (newspaper, song script, videos, electronic dictionary, recording conversation, etc) are recommended for teachers in teaching English since it makes students comfortable in learning, thus students can practices effortlessness by considering the materials since they need to practice more. Second, teachers may use authentic materials in other components and skills. The last, teachers should always motivate students when they are not confident to show their work. It can help them to increase their interest in learning. For the students, it is especially expected to improve students’ pronunciation. Besides,
this research is expected to build their confidence in English language, particularly to say word by word that they do not know and use the language.

REFERENCES

